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A tetracyclic diterpene, aphidicolirl), was first isolated as
an antiviral agent against Herpes simplex typelhter, it was
found that1l shows a variety of biological activity such as
antitumof? and phytotoxié® and specific inhibition of DNA
polymeraseo.?® Because of this latter property, is a com-
mercially available agent for studying cell cycles. Recently, it
has been reported thaspecifically damages a fragile site of the
manmalian genom®. Besides its remarkable bioactivity, its
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Figure 1. GC chart of the products of incubation ®fvith (GST)-ACS.
DB-1 capillary column ¢ 0.25 mmx 30 m, J&W Scientific); 106-280

°C, 5 °C/min. Numbers on the top of peaks correspond to compound
numbers in the text.

Scheme 1.The Biosynthetic Pathway of AphidicolirL)
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unique molecular skeleton has attracted synthetic chemists. Thisof aphidicolan-16-ol synthase that is a key enzyme in aphidicolin
prompted numerous synthetic studies and, to date, more than 1(iosynthesis in the fungudhoma betad>S-13%

groups have achieved the total synthesid.éf

Based on an incorporation study with doubly isotope labeled
precursors, Bu'Lock et al. proposed that the molecular skeleton
of 1 is constructed by a stepwise cyclization of geranylgeranyl
diphosphate (GGDR) to aphidicol-16-ene5a) via an unusual
intermediatesyncopalyl diphosphatesynCDP, 3) as outlined
in Scheme Z%. According to incorporation studies with the

plausible intermediates, Hanson et al. established that post-

cyclization conversion td occurs by two routes: a major route
via aphidicolan-16-ol (4) and a minor route vi&a.> Accumula-
tion of less oxidized intermediates in mycelia treated with P-450

Reverse transcription-polymerase chain reaction (RT-PCR) with
mRNA from P. betaeand degenerate primérbased on the
conserved amino acid sequences of plant and fungal diterpene
cyclases allowed us to amplify the 1100-bp band that showed a
significant similarity to fungaentkaurene synthases (FKSThe
nucleotide sequence of the full-length cDNA was determined by
5' rapid amplification of the cDNA ends #RACE) and 3-RACE
by using gene-specific primers. This contained the predicted 2997-
bp open reading frame, encoding a product of 998 amino acids
that was named aphidicolan{1-®| synthase (ACSj.Homology
searches indicate that the derived amino acid sequence of ACS

inhibitors led us to propose cytochrome P-450 dependent sequenshows good identity (3637%) with FKS and contains aspartate/

tial hydroxylations fromd4 to 1.5 These data indicate thdtis a
major cyclization product of the corresponding diterpene cyclase.
Herein, we report the cDNA cloning and functional expression
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glutamate rich motifs (DXDD and DD(E)XXD(E)). A full-length
cDNA was ligated into a pGEX 4T-3 vector for a protein-
expression analysis and the glutathi@eansferase (GST)-ACS
fusion protein was expressedHscherichia coliIM109. Purifica-

tion of a cell-free extract with affinity chromatography for GST
gave reasonably pure (GST)-ACS. The hexane extracts of the
reaction mixture obtained by incubation Bfwith (GST)-ACS
afforded three product 5a, and5b (Figure 1). These products

of the (GST)-ACS were identified, by comparison of retention
time and mass spectra with those of synthetic standfrds,
aphidicolan-16-ol (4, 87%), aphidicol-16-ene5@, 5%), and
aphidicol-15-ene8b, 8%). Since all products are found in the
mycelial extracts oP. betaeit is confirmed that these products
are produced by a single enzyme. Recently, Croteau et al. reported
that abietadiene synthase also produces multiple products.
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Scheme 2 Synthesis okynCopalyl Diphosphate3) tion®® is initiated by formation of an allylic cation followed by
A~y si-face attack of the olefin which is accompanied by a hydride
SO abe ; shift from C-9 to C-8 to afford B-pimarenyl catiornl0. Electro-
on ,Qd - philic attack of the vinyl group and subsequent migration of the
¢ \k alkyl group give aphidicolenyl catiohl. Final quenching of the

carbocationic intermediatEl proceeds in two ways: (1) depro-

tonation of either 15-H or 17-H and (2) stereoselective capture
Qif of water. Efficient quench of the cation with water is relatively

A vs (00 Xa . unusual in terpene synthasésSince the active sites of terpene

8b (endo) ) synthase are usually hydrophobic to avoid improper quenching
8a :8b=471 of the cationic intermediate with an external nucleophile such as
aConditions: (a) NaB&3 M NaOH, EtOH-CHCl;, 4 °C to room water, the stereoselective delivery of water is an interesting

temperature, 30 min, 92%; (b) DIBAH/THF-78 °C, 3(3) min; (€)  character of this enzymP. betaeproduces a number of diterpene
PhPCHBr, NaH/DMSO, room temperature to 7G, 2 h, 82%, 2steps;  hydrocarbons including stemar-13-éfielnvestigation on the
(d) AcO, E&N, DMAP/toluene, 70°C, 2 d, 91%; (€) 2,4,6-collidine, o7y me-product relationship is currently under way.

reflux, 8 h, 93%; (f) @, PdCh, CuCI/DMF—H,0, room temperature, 5 ; Lo
h, endoexo= 4.2:14 82%: (g) (EtO}P(O)CHCOMe, NaH/THF, 4°C Despite a remarkable sequence similarity between ACS and

fo room temperature, overnighE:Z =6.4:1, 96%; (h) DIBAH/E{O, 4 FKS? psgudeenantiotopic and diastereotopic pyclizations of

°C to room temperature, 1 h, 99%; (i) ref 13. GGDP2 with these enzymes afford the 6,6-bicyclic produet3-(
synCDP 3 (ACS) and ()-CDP (FKS), respectively. It suggests

Scheme 3.Enzymatic Formation of Aphidicolan-Beéol (4) that a relatively small change in amino acid sequence of a cyclase

H H is enough to promote the formation of a different diterpene carbon
ﬂmoppﬂ. mf' _bperh skeleton. Although the sesquiterpene synthases from microorgan-
H . 9 s N Lorp isms do not share high homology with each otlfesur results
reveal the significant homology among the fungal diterpene
" " synthases, suggesting that a homology-based PCR strategy could
6@%\% — QM%H — - 4 +5 +5b be useful for cDNA cloning of other funga_l diterpene s_ynthases_
Com, such as plant terpene synthases. Clustering for the biosynthetic
1 no o genes of fungal natural products has been recently recogHized.
This indicates that identification of the aphidicolansiél syn-
With (GST)-ACS in hand, the intermediacy sfncopalyl thase gene_would allow us to find a gene cluster for the aphidicolin
diphosphate3) was next examined. Synthesis ®fvas started  Piosynthesis by chromosome walking.
; % S
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Emmons olefination, and DIBAH reduction) reported previously. ) ) ) )
After separation of the minor regioisomer derived fr@m by Supporting Information Avallabl'e: GC-MS data on the authentic
reverse phase HPL® was further converted to racemg?3 samplest, 5a, and5b and the reaction products @fand3 with (GST)-

ACS, and sequence alignments of ACS and FKS (PDF). This material is

Under conditions identical to those used for incubatior?,08 available free of charge via the Internet at http://pubs.acs.org.

was incubated with (GST)-ACS. GC-MS analysis of the hexane

extract of the reaction mixture showed essentially the same patternJA015747J

as that of2. Thus, the result provided the conclusive evidence - - -
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